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Abstract

Free vibrations of spherical shells in water have been investigated.

By applying Hamilton's principle, a pair of basic coupled equations of

motion is derived based on the bending theory, For harmonic motions,

these equations are combined into a single sixth-order nonhomogeneous

differential equation of motion i.n normal displacement. For a shell

vibrating in water, the displacement of the shell and the hydrodynamic

pressure of the water field form an interaction problem which charac.�

terizes all vibration problems of underwater structures and is solved

by introducing the velocity potential of the water field. At the inter-

face of the shell and water, it i.s assumed that the normal velocity of

the shell is equal to that of the water field. The frequency equations

for axisymmetric free vibrations are derived and the mode shapes are

obtained. In each case examples are given and the results are plotted.



Introduction

The first work on the vibrations of a complete spherical shell is

attributed to Lamb [I]*. He has investigated the shell vibrations in

vacuum on the basis of membrane theory and has concluded that f' or axi-

symrretrical vibrations the amplitudes of the normal and the tangen-

th
tial displacements of the n mode are proportional to Legendre

polynomials and associated Legendre polynomials of the n degree,
th

respectively. On the basis of membrane theory, Baker [2, 3] has

extended Lamb's study [1] by solving a particular initial value

problem, and Junger [4] has discussed the case of vibrations of a

spherical shell in fluid medium.

In this paper the free vibrations of a complete spherical shell

in water will be investigated. A pair of basic coupled equations of

motion is derived based on the bending theory by applying Hamilton's

principle as has been done by Hayek   i] . After derivation of the

equations, however, Hayek only considered the free vibrations of a

complete spherical shell in a vacuum and a special case of harmonic

forced vibration in water. For harmonic motions the basic coupled

equations of this investigation are combined into a single sixth-order

nonhomogeneous differential equation of motion in normal displacement.

For a shell vibrating in water, the disp1acement of the shell

and the hydrodynamic pressure of the water field form an interacting

problem. In this paper, the interacting problem is solved by intro-

ducing the velocity potential of the water field. The hydrodynamic

pressure can be related to the veloc ty potentia1 by using Bernoulli's

*Yumbers in brackets designate References at the end of paper.



equation for unsteady, irrotational flow of a nonviscous, incompressible

fluid. With the assumption that the normal velocity of the shell is

equal to that of the water field at the surface of the shell, the hydro-

dynamic pressure can be expressed in terms of the normal displacement of

the shell.

The general frequency equation is deri.ved, from which the frequency

equations for the vibration in water based on the membrane theory and for

Lhe vibrations in a vacuum based on either bending or membrane theory

can be obtained as special cases. The mode shapes of the shell are

obtained in. two groups called upper and lower branches. In the lower

branch two special mode shapes are discussed. Examples are given and

results are plotted for free vibrations both in water and in a vacuum.

l. E uations of Motion

The basic equations for axisymmetric, nontorsional vibrations of a

spherical shell in water can be derived by use of Hamilton's principle.

In the following the equations of motion are first derived for general

motions in terms of normal and tangential displacements w and u in

two coupled equations. If the shell performs harmonic motion, all the

unknowns are harmonic variation.s in time, and the equations for general

motion can be reduced to a pair of coupled equations of motion in normal

functions W and U of normal and tangential displacements. Both

equations for general motion and harmonic motion are written in operator

form. Furthermore, for the harmonic motion the unknown U is eliminated

to give a single sixth-order differenLial equation in W. This single equation

can be applied to find the natural frequencies and the responses due to harmo-

nic force excitations. The equations for general motion will be used for the
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In Eq. �!, the first term represent., the strain energy density of

extension and shear; the second term that of bending and torsion. For

axisymmetric vibrations, the strain-cisplacement relations [6] are

c = � [w+ � ]1 3u
e=K se

c = � fw+ u cot 8]
1

R.

c = 0
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The total strain energy of the shell is obtained by integrating the

strain energy density over the entire middle surface of the shell as

aperiodic forced and free vibration.s.

The same derivation has been used by Bayek [5] to give equations

of motion in operator form for harmonic motion. Since a number of

errors appear in the derivation and iu the final equations of [5], the

correct equations are derived as follows:

Consider an elastic spherical thin shell of thickness h, radius

R, vibrating in water. The spherical coordinates  r,9,!! together with

the sign convention are shown in Fig. 1, The strain energy density per

unit surface of the shell derived by 'Iovozhilov [6] is
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The potential function of the hydrodynamic pressure p and surface
a

forces f is

X =  p +f!wds = 27rR  p +f!w sin 9 d92

a a
s o

By using Hamilton's principle,

t2  T � V+X!dt = 0

together with Eqs ~ �! to �!, the sh. 11 equations of motion are
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The total kinetic energy of the shell is

obtained as follows:

u
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39

and introducing the differential operator

3
3 w

2

F � 3 � 6 cot 6
a6 a02



V = � [�-x ! � ] = �-x ! � � - 2x � = + cot 9�a 2 3 2 9 3
3x Bx 2 3x 2 ae

3x
 e!

we may rewrite Eqs. �! in a compact form as

1-v 2..
2
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UU uw E s  9a!

2 2
1-V 2» 1-v 2u+L w=- E pRw+ R  p+f!  9b!
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L
UU
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WU dx

cV + c�-v!V + 2�+v!
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u x,t! = U x! cos g t

w x t! = W x! cos z t

p  x,t! = P  z! cos m t
a a

and

f x,t! = F x! cas x t

Eqs.  9! may be transformed into
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2
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2
where the frequency parameter  ! i» defined as

2 1-v 2 2
2

p R Q
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Eqs.  9! will be used for motions which are aperiodic in time. For

harmonic motions for which



LS we operate
1

[~ L-v! � �+>! + E:V ] � 0-x !
2 a 2"

3x

on Eq. �2a!, operate

[�+L!  L-v+V ! + 2 ]
2 2

on Eq. �2b!, and add the results together, U is eliminated and the

equation of motion in W is obtained as follows:

6 34 2 1 v 2 2
2

[V + aV +bV + c] W= R  dV +e! P +F!
Eh a �4!

where

a= 4+8
2

h = 5 � v + E i-v ! � �+>!Q
2 2 2

c = 2�-v ! �+/! + [�+3'! -1+v],, '-F~!
2 2 .4

d= L+E

= �- '!�+0! + E~ 2

 L5!

F = � = 12 R/h!
2

F

1n order to solve the equation of motion �4! for a given forcing

function F, it is necessary to derive an equation expressing the

hydrodynamic pressure P in terms of the normal displacement of the
a

shell W.

2. Hydrodynamic Pressure

The velocity potential of the water field can be related to the

hydrodynamic pressure by using Bernoulli's equation for unsteady,

irrotational flow of a nonviscous, incompressible fluid. The velocity

potential can also be related to the normal displacement of the shell

by the assumption that the normal velocity of the shell and that of

water are the same at the surface of the shell. Then the hydrodynamic





w= TZ E  n+1! R P  x!
-  n+2!

n n �0!

Multiplying Hq. �0! by P  x!, integrating over x from -1 to 1, and

«pplying the orthogonality condition of P  x! as
':!

0 fOr nl!n
�1!

result in

�2!

where

1

D  t! = w x, t! P  x!dxn ' n �3!

Introducing Eq. �2! into Hq. �9!, wc obtain the velocity potential

in  r,x, t! as

@  ! ~ 2n+1 Rn+2D   ! �  n+1! ,   !
2n+2 n n

n=0
�4!

The relation between the velocity potential and the hydrodynamic

pressure,

p a Bt
r=R

�5!

which is obtained according to Lamb [3] becomes

p =- IRK = � � � D  t! P  x!2n+1 d

a 2n+2 dt n n
n=0

�6!

Por the harmonic motions p and w are given in Eq. �1!. Differen-
a

I i sting Eq. �3! with respect to t gives

1
2

D  t! = I w x t! P  x!dx = -< cos w t W x! P  x!dx
-' -1 -1

'I'hen the hydrodynamic pressure acting on the surface of the shell

is obtained as follows:

1 P  x! P  x! dx =
m n

E 2n+1 n+2
D  t!

n 2n+2 n

2 for m = n

2n+1
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P  x! =e pRZ 2 2 C P  x!2 2n+1

n=0
�7!

where

1

G = W x! P  x! dx
n n �g!

3. Fre uenc E uations

equation is homogeneous. The frequency equations are obtained by

applying the boundary conditions to the solution of the basic equation.

in the case of the shell vibrating in water, even for the so called

free vibration, there is hydrodynamic pressure acting on the surface

of the shell. Hence, the displacement of the shell and the hydro-

dynamic pressure of the water field form an interacting problem.

Fortunately, the hydrodynamic pressure can be related to the displace-

ment of the shell by introducing the velocity potential of the water

field. This renders the interacting problem solvable.

Substituting the hydrodynamic pressure from Eq. �7! into the

equation of motion �4!, and setting E = 0 result in

[V +aV +bV +c]W x! = 2
-,6 4 2 2 Rp 2n+1 .2

hp 2n+2 n n
Z � C [d"' +e]P  x!

s n=0
�9!

Jn Eq. �9! the hydrodynamic pressure has been expressed in terms

of Legendre polynomials. Based on the identities of Legendre poly-

nomials as

V P  x! = -n n+1! P  x! = � A P  x!2 n n n n

V P  x! = V [-X P  x!] A P  x!
4 2 2

n n n n n

V P  x! = V [-X P  x!] = -X P  x!
6 4 3

n n n. n n

For the free vibration of the shell in a vacuu~, the basic differential



W x! = >: A P  x!
n n

n=0
�0!

a different manner Lamb [1] obtained the same conclusion by

comparing his simpler equations of motion based on the membrane theory

with Legendre differential equation. From Fq. �8! we have

1
2C = W x!P  x!dx = 2 A

n n 2n+1 n �1!

Substituting Eqs. �0! and �1! into .'q. �9! yields

A [-! + a! � bA + c]P  x!
3 2

n n n n n
n=0

A t-d +e]P  x!
�2 Rp,, 2n+1 2

s n=0
�2!

0ue to the orthogonality condition of P  x!, we may equate. the

coefficients of Kq. �2! to give the frequency equation as

aA + bA � c � 0 � � id' -e! = 0
3 2 2RP 1
n n n hp n+1 n

s
�3!

introducing the expressions of a, b, c, d and e from Eq. �5! into

Eq. �3!, and rearranging give

 ! F.,[1 + � � ] � 0 [X +X   +v! + �+3@!E-1+>
RP 1 2 2

hp n+1 n n
s

+ ~ � i X -1+v!]RA 1+5,
hp n+1 n

s

+ ! -4A + ! [5-v + E, l-v !] � 2 l-v ! �+6!] = 03 2 2 2 2

n n n
�4!

For each value of the integer n, Eq. �4! gives two distinct roots

2
in 0, which correspond to two distinct frequencies. The greater

the operators at the left hand side of Eq. �9! indicate that the normal

displacement W x! can be expressed in terms of Legendre polynomial

expansion, that is
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2.roots form the upper branch denoted by 5!; the others form the lower
2branch, 5l<. For n ~ 0, the roots are

2 2 �+v!

U 1 +~R
hp

s

�5a!

= �+~! -1+v!
2

�5b!

For n = 1, the roots are

Q = �+@! �+v! � +2= 2
!U ~R

2hp
s

�6a!

52 =0
2

�6b!

For membrane theory h ~ 0. Thus, multiplying Eq. �4! by

� � and taking the limit h ~ 0 result in
12R

+5l  -A +1 � v! =0
4 2

n �7a!

Case B. Vibration in a vacuum � 3ending Theory

Substituting the mass density of water p = 0 into Eq. �4! gives

0 E � 8 [A. + X   +u! + � + 3v!$, � 1 + v]
4 2 2

n n

+ [A � 4A + ! [5-u +E l-v !] -- 2�-u !�+ !! = 03 2 2 2 . 2

n n n �7b!

Eq. �7b! is the same as Hayek's result: [5].

Case C. Vibration in a vacuum � Membrane Theory

For membrane theory h ~ 0, therefore

12 Rjh! ~ ~ or � ~ 0
2 1

Eq. �4! is the most general frequency equation for a complete

spherical shell vibrating in water wh.ich takes into account the effects

of membrane, bending and hydrodynamic pressure. Some special cases

can be reduced from Eq. �4! as follow»:

Case A. Vibration in water--Membrane theory



1 1Multiplying Eq. �7b! by � and taking the limit � ~ 0 result in

5? � 5? [X + 1. + 3v] + �-v ! ! -2! = 0
4 2

n n �7c!

Natural Frequencies

Numerical examples for natural frequencies are presented for a

complete spherical steel shell vibrating both in a vacuum and in an

infinite water field, for which Poisson's ratio u = 0.3 and the ratio

oi thickness to radius h/R=O ~0.05 . The density ratio of water to

steel shell p/p = 0.1304. The first eleven values of the natural

2
frequency parameters 2 for each branch, computed from Eq. �4!, are

-2
given in Table 1 for h/R=0.03. For comparison, the values of 5? for

the vibration in a vacuum are included in the last two columns of

Table l.

Note that the first root for the lower branch in Table 1 is a

negative value which yields an imaginary frequency. Actually for this

frequency the corresponding mode does not exist. For the lower branch

the second root is zero. Therefore, the corresponding mode is merely

a rigid body translation of the entire shell.

Numerical results are plotted in the solid and the dotted lines

which denote vibrations in water and vacuum, respectively. In Fig. 2,

2
the natural frequency parameter 8 is plotted versus the ratios of

thickness to radius h/R for various mode number n. In Figs. 3 and

2
the parameter 5? is plotted versus the mode number n for various

ratios of thickness to radius h/R. Fig 3 emphasizes the lower branch,

while Fig. 4 emphasizes the upper branch.

2
The roots of Eq, �7c! in 5? are exactly the same as Baker's work [2].



The normal displacement W x! has been expressed in terms of

Legendre polynomials as shown in Eq. �0!. After substituting W x!

into equation of motion �2a!, an observation is made on the basis of

the form of the operators L and L of Eq, �0! and the follow-
uu uw

Lng identities for Legendre polynomials and associated Legendre

polynomials

'7P  x! = -X P  x!2 n n n
1

P  x! = -�-x ! � p  x!
1 2 2

n dx n �8!

[V � ]P  x! = -A P  x!2 1 1 1
2 n n n

1-x

This observation indicates that the tangential displacement U x! can

be expressed in terms of associated Legendre polynomials. Thus we may
thassume that the mode shapes W  x! and U  x! for the n mode of

n n

the shell are proportional to the appropriate Legendre polynomials of

degree n,

W  x! = a P  x!
n n n

�9!
U  x! = b P  x!

1

n n n

Lamb [1], in obtaining normal displacement in terms of Legendre

polynomials obtained the tangential displacement in terms of associated

Legendre polynomials simultaneously.

Since W  x! and U  x! are mode shapes associated with the samen n

mode number n, the amplitudes a and h must be related as follows:
n n

Substituting Kq, �9! into equation of motion �2a!, and using the
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i dentities as shown in Eq. �8! result in

1  l+E! b �-J-A ! P  x! � a [E  I-V!- it< !-eX ] [ � P  x! ] = 6 b P  x! �0!
n n n n n n n n

Equating the coefficients gives

b [�+a! A -1+v!-Q ] = a [E A -1+v!+1+v!2

n n n n �1!

Thus, we def ine

b c X -1+v!+1+v
n n

H
n a 2

n �+v!  X -1+@!-8
n

�2!

Let us normalize the normal displacement at the north pole, x = l.

Since P �! = 1, Eq. �9! gives
n

�3!a
n

with one exception for n ~ 0 of the lower branch to be discussed.

Thus the mode shapes become

W  x! = P  x!

�4!

U  x! = H P  x!
1

where H are given in Eq. �2! . Since for each value of the integer
n

n there are two distinct frequencies, there must also be two corres-

ponding mode shapes. Thus Eq, �2! gives two distinct values for Hn'

those corresponding to the upper branch are denoted by H, then'

others corresponding to the lower branch are denoted by H
n

2
which yields the imaginary frequency. Substituting 0 = �+v!  -1+a!

from Eq. �5b! into Eq. �1! gives

�5!a =0
0

ln Section 4, we have pointed out that there are two special

frequencies. The first special case is for n = 0 of the lower branch,



has no displacements in both normal and tangential directions. This

proves that corresponding, to the imaginary frequency the mode does

not exist. In solving a particular initial value problem, Baker t2]

has arrived at the same result of a = 0. The second special case is
0

2for n = 1 of the lower branch. Substituting the zero value of r!<

from Eq. �6b! into Eq. �2! gives

�6!H = 1

Thus, Eq . �4! yields

W  x! =P  x} =x cos  }
1 1

1 22d
V  x! = P  x! � �-x ! � P  x} ~ -sin 9

1 1 dx 1

�7!

At any section 0, the vertical displacement at any point is

W cos 9 � V sin 0 ~ 1
1 1 �8!

and the horizontal displacement at any point is

W sin 8 + U cos 8 = 0 �9!

These conditions prove that this mode is merely a rigid body transla-

tion of the entire shell.

The first eleven values of H , computed from Eq. �2! > aren'

given in Table 2 for v = 0.3, h/R = 0.03 and p/p 0.1304. For com-

parison, the values of H for the vibration in vacuum are included in
n

the last two columns of Table 2.

All the mode shapes can be determined from Eq. �4! except for

n = 0 of the lower branch, which is a nonexisting mode. Eq. �4!

Furthermore, P  x! = 0. Therefore, it can be concluded that this mode
1
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thindicates that the n normal mode shape of the shell is exactly the

same as Legendre polynomial of degree n. It may be mentioned that

this relation holds for both the cases of shell vibration in water and
th

in vacuum. The n tangential mode shape is proportional to associated

Legendre polynomial of degree n with the proportional factor H
n'

Table 2 indicates that for the lower branch the values of H for the
n

vibrati.on in vacuum are close to that in water, while for the upper

branch they differ greatly, The first six ~odes are shown in Fig. 5 to

15 for the shell vibrating in water based on the bending theory far

v = 0.3, h/R = 0.03 and p/p = 0.1 304. The solid and the dotted lines

denote the displaced and the equilibrium positions, respectively.
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2Table l. Natural Frequency Parameters B  Bending Theory!
for v~0.3, h/R=0.03

Vibration in Water Vibration in Vacuum

72.479

90.520

110.557

O. 839

1.019

1.261

8

9

10

73.056

91.056

111.058

1.234

1.454

1.751

Table 2. Amplitude of Tangential Displacement H for Unit
n

Normal Displacement  Bending Theory! for s=0.3,
b/R = 0.03

Vibration in Water Vibration in Vacuum

1.000

0.270

0.122

0.019

0.015
0,012

0.018

0.015

0.012

-0. 746

-0.747

-0.747

-1.112

-1.077
-1.048

8

9

10

u
0. 486

2.119

6.120

12.190

20.262

30.327

42.384

56.434

H

-1.096

� 1.588

-1.587

-1,463

-1. 355

� 1,270

-1, 205

-1.154

2
Q

-0,700

0.0

0.243

0.361

0.445

0.521

0.603

0.705

n

1.000

0.257

0.119

0.069

0.045

0.032

0.024

2.600

3.900

7.411

13. 216

21.132

31 ' 092

43. 071

57.061

H
n

-0. 394

-0. 500

-0.616

-0.679

-0.711

-0.728

-0.737

� 0.742

2

-0.700

0.0

0.492

0.695

0.798

0.876

0.962

1.076

0.070

0.045

0.032

0.024
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Fig. 2 Natural frequency parameter Q. vs h/H for a
complete spherical shell
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Fig. 3 Natural frequency parameter N vs mode number n
for a complete spherical shell
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Vig. 4 Natural frequency parameter D vs mode number n
for a complete spherical shell--Upper branch



Vig. 5 The mode shape for n=0 of the upper branch



Fig. 6 The m.ode shape for n= 1 of the upper branch



Fig. 7 The mode shape for n=l of the lower branch



Fig. 8 The mode shape for n=-2 of the upper branch



I ig. 9 'I'he mode shape for n=2 of the lower brar>ch



Vig. 10 The mode shape for n='< of the upper branch



Fig. 11 The mode shape foi n--2 of the lower branch



Fig. 12 The mode shape fo~ n--4 of the upper brans:h



I"ig. 13 The mode shape for n=4 of the lower branch



Fig. 14 The mode shape for n-5 of the upper branch



Fig. 15 The mode shape fair n=G of the 1ower branch


