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Abstract

Free vibrations of spherical shells in water have been investigated.
By applying Hamilton's principle, a pair of basic coupled equations of
motion is derived based on the bending theory. For harmonic motions,
these equations are combined intcv a single sixth-order nonhomogeneous
differential equation of motion in normal displacement. For a shell
vibrating in water, the displacement of the shell and the hydrodynamic
pressure of the water field form an interaction problem which charac-
terizes all vibratlon problems of underwater structures and is solved
by introducing the velocity potential of the water field. At the inter-
face of the shell and water, it is assumed that the normal velocity of
the shell is equal to that of the water field. The frequency equations
for axisymmetric free vibrations are derived and the mode shapes are

obtained. In each case examples are given and the results are plotted.



Introductien

The first work on the vibrations of a complete spherical shell is
ateributed to Lamb [1]*. He has investigated the shell vibrations in a
vacuum on the basis of membrane theory and has concluded that for axi-
symmetrical vibrations the amplitudes of the normal and the tangen-
tial displacements of the nth mode are proportional to Legendre
polynomials and associated Legendre polynomials of the nth degree,
respectively. On the basis of membrane theory, Baker [2, 3] has
extended Lamh's study [1] by solving a particular initial value
problem, and Junger [4] has discussed the case of vibrations of a
spherical shell in fluid medium.

In this paper the free vibrations of a complete spherical shell
in water will be investigated. A palr of basic coupled equations of
motion is derived based on the bending theory by applying Hamilton's
principle as has been done by Hayek [53]. After derivation of the
equations, however, Hayek only considered the free vibrations of a
complete spherical shell in a vacuum and a speclal case of harmonic
forced vibration in water. For harmonic mctions the basic coupled
equations of this investigation are combined into a single sixth-order
nonhomogeneous differential equation of motlon in normal displacement.

For a shell vibrating in water, the displacement of the shell
and the hydrodynamic pressure of the water field form an interacting
problem. In this paper, the interacting problem is solved by intro-
ducing the velocity potential of the water field. The hydrodynamic

pressure can be related to the velocity potential by using Bernoulli's

*Numbers in brackets designate References at the end of paper.



equation for unsteady, irrotational flow of a nonviscous, incompressible
fluid. With the assumption that the normal velocity of the shell is
equal to that of the water field at the surface of the shell, the hydro-
dynamic pressure can be expressed in terms of the normal displacement of
the shell.

The general frequency equation 1s derived, from which the frequency
equations for the vibration in water based on the membrane theory and for
Lhe vibrations in a vacuum based on either bending or membrane theory
can be obtained as special cases., The mode shapes of the shell are
obtained in two groups called upper and lower branches. In the lower
branch two special mode shapes are discussed. Examples are given and

tesults are plotted for free vibrations both in water and in a vacuum.

L. Equations of Mcoticn

The basic equations for axisymmetric, nontorsional vibrations of a
spherical shell in water can be derived by use of Hamilton's principle.
lo the following the equations of motion are first derived for general
motions in terms of normal and tangential displacements w and u in
two coupled equations. If the shell performs harmonic motion, all the
unkrowns are harmonic variations in time, and the equations for general
motion can be reduced te a pair of coupled equations of motion in normal
functions W and U of normal and tangential displacements. Both
equations for general motion and harmcnic motion are written in operator
form. Furthermore, for the harmonic motion the unknown U is eliminated

te give a single sixth-order differential equation in W. This single equation

can be applied to find the natural frequencles and the responses due to harmo-

nic force excitations. The equations for general motion will be used for the



aperiodic forced and free vibrations.

The same derivation has been used by Hayek [5] to give equations
of motion in operator form for harmonic motion. Since a number of
errors appear in the derivation and in the final equations of [5], the
correct equations are derived as follows:

Consider an elastic spherical thin shell of thickness h, radius
R, vibrating in water. The spherical coordinates (r,0,$) together with
the sign convention are shown in Fig. 1, The straln energy density per

unit surface of the shell derived by Novozhilov [6] is

- Eh 8¢
V= —E [egrey) Z_5(1- V) (gt —2 ]
2(1-v%) ¢ 6%¢”
(1)
+ _md [(cgH 2 001-9) (k. k.5 ]
24 (1-v%) “ B o

In Eq. (1), the first term represent: the straln energy density of
extension and shear; the second term that of bending and torsion. For

axisymmetric vibrations, the strain-cisplacement relations [6] are

du
88 [w + = 36
£, = ;-[w + u cot B]
$ R
Ee¢ =0
2
R 290
_1 o w
K¢ = [ Tl 4+ u] cot B
R
Ke¢ =0

The total strain energy of the shell is obtained by integrating the

strain energy density over the entire middle surface of the shell as



VvV = —[-V ds = 2TR .I V si» © 4¢
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The total kinetic energy of the shell is

T=2 pS-j— (ultil)dv = ﬂpﬁth-J (u’+w?)sin 0 d6
V O

[o}

(3)

(4)

The potential function of the hydrodvnamic pressure P, and surface

forces f is

3

-
X = J— (pa+f)wds = ZHRZJ- (pa+f)w sin 6 df
g .
By using Hamilton's principle,

9
6.[ (L -V + X)de = 0

1

together with Eqs. (1) to (5), the sh2ll equations of motion are

obtained as follows:
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Changing the independent wvariable through the relation
X = cos U, 0<8<m; -1 <x <1

and introducing the differential operator

(5)

(6a)

(6b)

(7)
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0x 26
we may rewrite Eqs. (6) In a compact form as
2
I 2.
Luu u + Luw w o= —E--psR u {(%a)
2 2
_ 1=y Zeo | 1=v© 2
Ly 0t L, w= 7 PRW + e R (p +f) (9b)
where the differential operators are
L =~ (1+£)[(1-v) SR S ]
uu 2
1-x
1
_ _ 2,24 _ _ i 2
Luw = (1-x7) ix [e(1-V) (1+v) + eV7]
1 (10)
- vy - 20d 22
Liw = [e(1-v} - (1+v) + V7] i (1-x7)
L= e+ e(1-w)V + 2014v)
ww

Egs. (9) will be used for motions which are aperiodic in time. For

harmonic motions for which

ul(x,t) U(x) cos w t
w(x,t) = W(x) cos w t (11)

Pa(X,t) = Pa(x) cos w t

and
f(x,t} = F(x) cos w t
Egqs. (9) may be transformed into

o2y (12a)

L U+ 1L W
uu uw

l-vz
Eh

L U+ L W QZW + RZ(P + F) (12b)
wu wW a

where the frequency parameter 92 is defined as

9
g2 = Y g2,2 (13)
B s




If we operate
il

[E{1-v) - (1+v) + €V2] %; (1—x2)2
on Eq. (12a), operate

[(4e) (1-w7°) + 02
on Eq. (12b), and add the results together, U is eliminated and the
equation of motion in W 18 obtained as follows:

12
El

(v + av® 4678 + o] W =

R? (dV° + e)(P_ + F) (14)

where

b+ 0°

b =5 - v+ EA-vY) = (E+n)02

joH]
1}

e = 2(l—v2)(1+£) + [(l+3v)E,’—l+v]...;-:2-—E;S'B'II

15
d=1+¢
e = (1-v) (I+L) + £0°

£ = % = 12(R/h)?
In order to solve the equation of motion (14) for a given forcing
function F, it is necessary to derive an equation expressing the

hydrodynamic pressure Pa in terms of the normal displacement of the

shell W.

2. Hydrodynamic Pressure

The velocity potential of the warer field can be related to the
hydrodynamic pressure by using Bernoulli's equation for unsteady,
irrotational flow of a nonviscous, incompressible fluid. The velocity
petential can alsc be related to the normal displacement of the shell
by the assumption that the normal velucity of the shell and that of

water are the same at the surface of the shell. Then the hydrodynamic



pressure of the water field and the normal displacement of the shell can
be related together. For a complete spherical shell vibrating in an
infinite water field, the velocity potential 9(r,9,t) of this field

satisfies Laplace's equation,

320
__.5_{_
or

Z
r

g

1 0P
+ i) + 2= = 0 (16)

and the boundary conditions

(a) & +0 as 1 *rw

(k) ¢ finite at € =0 and =17
ad .
(c) g;‘| = - W
r = R

By the method of separation of variahles, the substitution of
$ =R(r) C (8 T (t)

into Eq. (16} yields [7]

2
d R 2 dR _ n(ntl) o _

> t y R=0 (17)
dr T
2% 4o
— + cot § T + n(n+l)d =0 (18)
d62 d

Egs. (17) and (18) are in the form of Euler's equation and Legendre's
equation, respectively. Their solutions are

~ o no o ~(n+1)
R = hll r + ElZ r

[
I}

EZan(cos 8) + Ezzqn(cos ) = E21Pn(x) + EZZQn(x)
The boundary condition (a) requires that Ell = 0. Since Qn(x) > o

as x * *1, and Pn(x) -~ ® as x * -1 wunless n = integer (8], the

boundary condition (b) yields E22 = (0 and n = integer. Thus

¢ =TI E_ ety

(x) {(19)
n=u n

The boundary condition (e) yields



oo

w=T32 E_(ntl) R

n={)

02y ) (20)

Multiplying HEq. (20) by Pn(x), integrating over x from -1 to 1, and

applying the orthogonality condition of Pq(x) as

Jﬂ 1 0 for m + n
P (x) P (x) dx = (20
-1 ® n 2 for m=n
2o+l
result in
_ 204l _nt2

TE =3 -5R Dn(t) (22)

where
1 L]
D {(t) =.[ w(x,t) P (x)dx (23)
n -1 n

Introducing Eq. (22) into LEq. (19), wc obtain the velocity potential

in (r,x,t) as

P(r,x,t) = %
n={

2n+l Rp+ (no+l)

2n+2

2 - )
Dn(t) r in(X) (24)

The relation between the velocity potential and the hydrodynamic

pressure,

20
P, =" 5 | (25)
r=R
which is obtained according to Lamb [3] becomes
T ¥l d
= o . ntl 4
pa B pRnEO n+2 4t Dn(t) Pn(x:l (26)

For the harmonic motions P, and w are given in Eq. (11). Differen-
tiating Eq. (23) with respect to t glves

d L 2 1
"—'Dn(t) = wix,t) Pn(x)dx = -Wcos w t-[ W(x) Pn(x)dx

dt - 1

Then the hydrodynamic pressure acting on the surface of the shell

15 obtained as follows:
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2 T 2oh
Pa(x) = w QRHEO T Cn Pn(x) (27)

1
C =‘f Wx) Pn(x)dx {28)

3. Frequency Equations

For the free vibration of the shell in & vacuum, the basic differential
equation is homogeneous. The frequency equations are obtained by
applying the boundary conditions to the solution of the basic equation.
In the case of the shell vibrating in water, even for the s¢ called
free vibration, there is hydrodynamic pressure acting on the surface
of the shell. Hence, the displacement of the shell and the hydro-
dynamic pressure of the water field form an interacting problem.
Fortunately, the hydrodynamic pressure can be related to the displace-
ment of the shell by introducing the velocity potential of the water
ield. This renders the interacting problem solvable.

Substituting the hydrodynamic pressure from Eq. (27) into the
equation of motion (14), and setting F = 0 result in

2n+1

Tt ©

(V0427 +bV e W(x) = 02 R 3

42
d*V +e]P (%) {29)
hps n=0 n

nl

Tn Eq. (29) the hydrodynamic pressure has been expressed in terms
of Legendre polynomials. Based on the identities of Legendre poly-

nomials as

VP () = -a(o+) P_(x) = = A_P_(x)

b 2 2
v Pn(x) v [—AnPn(x)] = An Pn(x)

6 4 3
Y Pn(x) v [-lnPn(x)] = -lnPn(x)
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the operators at the left hand side of Eq. (29} indicate that the normal
displacement W(x) can be expressed in terms of Legendre polynomial

expansion, that is

oc

W(x) = nio An Pn(x) {30)

In a different manner Lamb [1] obtained the same conclusion by
comparing his simpler equations of motion based on the membrane theory

with Legendre differential equation. From Fq. {28) we have

1
2
c =J—1 WGP (odx = 5o A (3D

Substituting Eqs. (30) and (31) into ig. (29) yields
o
. 3 2
& A [=A7 4+ alk” - bA + c]P (x)
Qg Mn 0 n n

oo
2 Rp - 2ntl 2

hps =0 2n42 "n 2n+l

- M
=

f-d ln+e]Pn(x) (32)

Due to the orthogonality conditlon of Pn(x), we may equate the
coefficients of Eq. (32) to give the frequency equation as

3 2 2R0 1
Ao - akt 4 bA - e - Q b, aHl (dd_-e) = 0 (33)

Introducing the expressions of a2, b, ¢, d and e from Eq. (15) into

g, (33), and rearranging give

tern + R Ly - P %k (Bh) + (L+30)E-La

ho n+l
=]
Rp  1+E . _
+ hps e (An 1+v)]
+{A3—4Ai + An[s—vz + EQ=vD)) - 20005 (1+E)} = 0 (34)

For each value of the integer n, Eq. (34) gives two distinct roots

. 2 , , .
in {7 which correspond to two distipnct frequencies. The greater



roots form the upper branch denoted by Hi; the others form the lower

branch, ﬂﬁ. For n = 0, the rocts are

Q2 o 2014V
uop 4+ R

hpS

Qﬁ = (14€) (-1+V)

For n = 1, the roots are
2

Rp
1+ 2o,

Qi = (4e) (1) (1 + )

(35a)

(35b)

(36a)

(36b)

Eq. (34) is the most general frequency equation for a complete

12

spherical shell vibrating in water which takes into account the effects

of membrane, bending and hydrodynamic pressure. Some special cases

can be reduced from Eq. (34) as follows:

. Case A. Vibration in water--Membrane Theory

For membrane theory h =+ 0. Thus, multiplying Eq. (34) by

3
-B. and taking the limit h > 0 result in
1283

QA + 92(-An + 1 -V} =0

Lase B. Vibration in a vacuum--Bending Theory

Substituting the mass density of water p = 0 into Egq.

Q% - Qz[hi #A_(BR) + (1 + 3 = 1+ V]

2

+ {A3 - 4
n n

# 4 [5-v 2D ] - 2007 (140)} = 0
Eq. (37b) is the same as Hayek's result [5].
Cagse €. Vibration in a vacuum--Membrane Theory

For membrane theory h > 0, therefore

£ 12(R/)°2 v @ or %—+ 0

{37a)

(34) gives

(37b)
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Multiplying Eq. (37b) by é— and taking the limit %'+'O result in

Q- QEIA_+ 1+ 3] + (1—\)2)(?\n~2) = 0 (37¢)

The roots of Eq. (37¢) in 92 are exactly the same as Baker's work [2].

+. Natural Frequencies

Numerical examples for natural frequencies are presented for a
complete spherical steel shell vibrating both in a vacuum and in an
infinite water field, for which Poisson's ratioc v = 0.3 and the ratio
of thickness to radius h/R=0 ~0.05. The density ratio of water to
steel shell p/ps = 0.1304. The first eleven values of the natural
frequency parameters Qz for each braunch, computed from Eq. (34), are
given in Table 1 for h/R=0.03. For comparison, the values of Qz for
the wibration in a vacuum are included in the last two columns of
Table 1.

Note that the first root for the lower branch in Table 1 is a
negative value which yields an imaginary frequency. Actually for this
frequenby the corresponding mode does mnot exist., For the lower branch

the second root is zero. Therefore, the correspondling mode is merely

a rigid body translation of the entire shell.

Numerical results are plotted in the solid and the dotted lines
which denote vibrations in water and vacuum, respectively. Tn Fig. 2,
the natural frequency parameter Qz is plotted versus the ratios of
thickness to radius h/R for wvarlous mode number n. In Figs. 3 and 4,
the parameter Qz is plotted versus the mode number n for various
ratios of thickness to radius h/R. Fig. 3 emphasizes the lower branch,

while Fig. 4 emphasizes the upper branch,.



14

5. Mode Shapes

The normal displacement W(x) has been expressed in terms of
Legendre polynomials as shown in Eq. (30). After substituting W{x)
into equation of motion (12a), an observation is made on the basis of
the form of the operators Luu and Luw of Eq. (10) and the follow-
ing identities for Legendre polynomials and associated Legendre

pelynomials

2 = -
v Pn(x) = lnPn(x)

1 |
Pi(x) = —(1-xH? gg P_(x) (38)

1

l-x2

v* -~k = -2 el

This observation indicates that the tangential displacement Uz} can
be expressed in terms of associated Legendre polynomials. Thus we may
assume that the mode shapes Wh(x) and Un(x) for the nth mode of

the shell are proportional to the appropriate Legendre polynomials of

degree n,

Wn(x) aP (x)

n

(39)

b_P
n

(x)

=B~ |

Un(x)

Lamb [1], in obtaining normal displacement in terms of Legendre
polynomials obtained the tangential displacement in terms of associated
Legendre polynomials simultaneously.

Since Wn(x) and Un(x) are mode shapes associated with the same
mode number n, the amplitudes a and bn must be related as follows:

Substituting Eq. (39) into equation of motion (12a), and using the
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ldentities as shown in Eq. (38) result in
()b (1-v-2 )PL(x) - a_[e(@-v)-(1+)=eh 11210 ] = 9% pleny  (40)
n n’ ' n n n p ¥ s a0 (%)
Equating the coefficients gives
2
bn[(l+€)(ln—l+v)—ﬂ ] = an[E(ln—l+v)+1+v] (41)

Thus, we define

b e(An-l+v)+1+v

H =2 -
S S NS T

(42)

Let us normalize the normal displacement at the north pole, x = 1.

Since Pn(l) = 1, Eq. (39) glves
a = 1 (43)

with one exception for n = 0 of the lower branch to be discussed.

Thus the mode shapes becone

Wo(x) =P (x)
(44)
_ 1
Un(x) = HnPn(x)
where Hn are given in Eq. (42). Since for each value of the integer

n there are two distinet frequencies, there must alsoc be two corres-—
ponding mode shapes. Thus Eq. (42) gives two distinct values for H ,
those corresponding to the upper branch are denoted by Hg, the
others corresponding to the lower branch are denoted by Hi‘

In Section 4, we have pointed out that there are two special
frequencies. The first speclal case is for n = 0 of the lower branch,
which yields the imaginary frequency. Substituting Qﬁ = (1+4+€) {(~1+v)

from Eq. (35b) into Eq. {(41) gives

a =20 (45)
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Furthermore, Pé(x) = 0. Therefore, it can be concluded that this meode
has no displacements in both normal and tangential directions. This
proves that corresponding to the imaginary frequency the mode does

not exist. In solving a particular initial value problem, Baker [2]

has arrived at the same result of a, = 0. The second special case is

Iy

2
for n =1 of the lower branch. Substituting the zero value of Qg

d

from Eq. (36b) into Eq. (42) gives

Hyo= 1 (46)

Thus, Eq. (44) yields

Wl(x) = Pl(x) =x = cog O

1 (47)
Pi(x) = —(1-x2)2 %; P, (x) = -sin 8

U, (x)

At any section 0, the vertical displacement at any point is

wl cos O - Ul sin 8 = 1 48)

and the horizomtal displacement at any peint is

Wl sin 0 + Ul cos B =20 (49)

These conditions prove that this mode is merely a rigid body transla-
tion of the entire shell.

The first eleven values of Hn’ computed from Eq. (42), are
given in Table 2 for v = 0.3, h/R = 0.03 and D/DS = 0.1304. For com-
parison, the wvalues of l-Irl for the vibration in wvacuum are included in
the last two columns of Table 2.

All the mode shapes can be determined from Eq. (44) except for

n =0 of the lower branch, which is a nonexisting mode. Eq. (44)
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indicates that the nth normal mode shape of the shell is exactly the
same as Legendre polynomial of degree n. It may be mentioned that

this relation holds for both the cases of shell vibration in water and

in vacuum. The nth tangential mode shape is proportional to associated
Legendre polynomial of degree n with the proportional factor Hn'

Table 2 indicates that for the lower branch the values of Hi for the
vibration in vacuum are close to that in water, while fer the upper
branch they differ greatly, The first six modes are shown in Fig. 5 to
15 for the shell vibrating in water based on the bending theory for

v = 0.3, h/R = 0.03 and p/ps = 0.1304. The solid and the dotted lines

denote the displaced and the equilibrium positions, respectively,
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Table 1. Natural Frequency Parameters Qz {Bending Theory)
for v=0.3, h/R=0.03

Vibration in Water Vibration in Vacuum
2 2 2 2

n Qu QE £ QQ
0 0.486 -0.,700 2.600 -0.700
1 2.119 0.0 3.900 0.0
2 6.120 0.243 7.411 0.492
3 12,190 0,361 13.216 0.695
4 20.262 0.445 21.132 0.798
5 30,327 0.521 31.092 0.876
6 42.384 0.603 43.071 0.962
7 56.434 0.705 57.061 1.076
8 72.479 0.839 73.056 1.234
9 90.520 1.019 91.056 1.454
0 110.557 1.261 111.058 1.751

Table 2. Amplitude of Tangential Displacement Hn for Unit
Normal Displacement (BEending Theory) for v=0.3,

h/R = 0.03

Vibration in Water Vibration in Vacuum

n 15hg i the -

! n n n

¢ -1.096 - ~0. 394 -
1 -1.588 1.000 -0.500 1.000
2 -1.587 0.257 ~0.616 0.270
3 -1.463 0.119 ~0.679 0.122
4 ~1.355 0.069 ~0.711 0.070
5 -1.270 0.045 -0.728 0.045
6 -1.205 0.032 ~0.737 0.032
7 ~1.134 0.024 -0.742 0.024
8 ~1.112 0.019 -0.746 0.018
9 -1.077 ¢.015 -0.747 0.015
0 -1.048 0.012 -0.747 0.012
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Fig. 3 Natural frequency parameter 2 vs mode number n

for a complete spherical shell
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Fig. 4 Natural frequency parameter {1 vs mode number n
for a complete spherical shell--Upper branch



Fig. 5 The mode shape for n=0 of the upper branch



Fig.6 The mode shape for n=1 of the upper branch



Fig.7 The mode shape for n=1 of the lower branch



Fig.8 The mode shape for n=2 of the upper branch



Fig.9 The mode shape for n=2 of the lower branch



Fig.10 The mode shape for n=3 of the upper branch
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Fig.11 The mode shape for n=3 of the lower branch



Fig.12 The mode shape for n=4 of the upper branch



Fig.13 The mode shape for n=4 of the lower branch
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Fig.14 The mode shape for n=5 of the upper branch



Fig.15 The mode shape f¢r n=5 of the lower branch



